Chapter 6: Exploring Data: Relationships Lesson Plan

■ Displaying Relationships: Scatterplots

■ Making Predictions: Regression Line

■ Correlation

■ Least-Squares Regression

- Interpreting Correlation and Regression

Chapter 6: Exploring Data: Distributions Displaying Relationships

- Relationship Between Two Variables
\square Examine data for two variables to see if there is a relationship between the variables. Does one influence the other?
\square Study both variables on the same individual.
\square If a relationship exists between variables, typically one variable influences or causes a change in another variable.
- Explanatory variable explains, or causes, the change in another variable.
- Response variable measures the outcome, or response to the change.

> Response variable -
> A variable that measures an outcome or result of a study (observed outcome).

Chapter 6: Exploring Data: Distributions Displaying Relationships: Scatterplots

- Data to Be Used for a Scatterplot
\square A scatterplot is a graph that shows the relationship between two numerical variables, measured on the same individual.
- Explanatory variable, \boldsymbol{x}, is plotted on the horizontal axis (\boldsymbol{x}).
- Response variable, \boldsymbol{y}, is plotted on the vertical axis (\boldsymbol{y}).
- Each pair of related variables $(\boldsymbol{x}, \boldsymbol{y})$ is plotted on the graph.

Example: A study is done to see how the number of beers that a student drinks predicts his/her blood alcohol content (BAC). Results of 16 students:

Explanatory variable, $\boldsymbol{x}=$ beers drunk

Response variable,
$\boldsymbol{y}=$ BAC level

Student	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Beers	5	2	9	8	3	7	3	5
BAC	0.10	0.03	0.19	0.12	0.04	0.095	0.07	0.06
Student	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
Beers	3	5	4	6	5	7	1	4
BAC	0.02	0.05	0.07	0.10	0.85	0.09	0.01	0.05

Chapter 6: Exploring Data: Distributions Displaying Relationships: Scatterplots

- Scatterplot
\square Example continued: The scatterplot of the blood alcohol content, BAC, (\boldsymbol{y}, response variable) against the number of beers a young adult drinks (\boldsymbol{x}, explanatory variable).
\square The data from the previous table are plotted as points on the graph ($\boldsymbol{x}, \boldsymbol{y}$).

Examining This Scatterplot...

1. What is the overall pattern (form, direction, and strength)?

- Form - Roughly a straight-line pattern.
- Direction - Positive association (both increase).

■ Strength - Moderately strong (mostly on line).
2. Any striking deviations (outliers)? Not here.

BAC vs. number of beers consumed

Outliers - A deviation in a distribution of a data point falling outside the overall pattern.

Chapter 6: Exploring Data: Distributions

Regression Lines

- Regression Line
\square A straight line that describes how a response variable \boldsymbol{y} changes as an explanatory variable \boldsymbol{x} changes.
\square Regression lines are often used to predict the value of \boldsymbol{y} for a given value of \boldsymbol{x}.

A regression line has been added to be able to predict blood alcohol content from the number of beers a student drinks.
Graphically, you can predict that if $\boldsymbol{x}=6$ beers, then $\boldsymbol{y}=$ 0.95 BAC.
(Legal limit for driving in many states is $B A C=0.08$.)

Chapter 6: Exploring Data: Distributions

Regression Lines

- Using the Equation of the Line for Predictions
\square It is easier to use the equation of the line for predicting the value of \boldsymbol{y}, given the value of \boldsymbol{x}.
Using the equation of the line for the previous example:

$$
\begin{aligned}
\text { predicted } \mathrm{BAC} & =-0.0127+(0.01796)(\text { beers }) \\
y & =-0.127+0.01796(\boldsymbol{x})
\end{aligned}
$$

For a young adult drinking 6 beers $(x=6)$:

$$
\text { predicted BAC }=-0.0127+0.01796(6)=0.095
$$

- Straight Lines
\square A straight line for predicting \boldsymbol{y} from \boldsymbol{x} has an equation of the form:

$$
\hat{y}=m x+b
$$

In this equation, \boldsymbol{m} is the slope, the amount by which \boldsymbol{y} changes when \boldsymbol{x} increases by 1 unit.
\square The number \boldsymbol{b} is the y-intercept, the value of \boldsymbol{y} when $\boldsymbol{x}=0$.

Chapter 6: Exploring Data: Distributions

Correlation

- Correlation, r

\square Measures the direction and strength of the straight-line relationship between two numerical variables.
\square A correlation r is always a number between -1 and 1 .
\square It has the same sign as the slope of a regression line.
■ $r>0$ for positive association (increase in one variable causes an increase in the other).

- $\boldsymbol{r}<0$ for negative association (increase in one variable causes a decrease in the other)

Chapter 6: Exploring Data: Distributions

Correlation

- Correlation, r
\square Perfect correlation $\boldsymbol{r}=1$ or $\boldsymbol{r}=-1$ occurs only when all points lie exactly on a straight line.
The correlation moves away from 1 or -1 (toward zero) as the straight-line relationship gets weaker.
\square Correlation $\boldsymbol{r}=0$ indicates no straight-line relationship.

Chapter 6: Exploring Data: Distributions

Correlation

- Correlation
\square Correlation is strongly affected by a few outlying observations. (Also, the mean and standard deviation are affected by outliers.)
-Equation of the Correlation
\square To calculate the correlation, suppose you have data on variable \boldsymbol{x} and \boldsymbol{y} for \boldsymbol{n} individuals.
\square From the data, you have the values calculated for the means and standard deviations for \boldsymbol{x} and \boldsymbol{y}.
- The means and standard deviations for the two variables are \bar{x} and $\boldsymbol{s}_{\boldsymbol{x}}$ for the \boldsymbol{x}-values, and $\overline{\boldsymbol{y}}$ and $\boldsymbol{s}_{\boldsymbol{y}}$ for the \boldsymbol{y}-values.
\square The correlation r between \boldsymbol{x} and \boldsymbol{y} is:

$$
r=\frac{1}{n-1}\left[\frac{\left(x_{1}-\bar{x}\right)}{s_{x}} \frac{\left(y_{1}-y\right)}{s_{y}}+\frac{\left(x_{2}-\bar{x}\right)}{s_{x}} \frac{\left(y_{2}-y\right)}{s_{y}}+\cdots+\frac{\left(x_{n}-\bar{x}\right)}{s_{x}} \frac{\left(y_{n}-y\right)}{s_{y}}\right]
$$

Chapter 6: Exploring Data: Distributions
 Correlation

- Correlation
\square The scatterplots below show examples of how the correlation r measures the direction and strength of a straight-line association.

Chapter 6: Exploring Data: Distributions

Least-Squares Regression

- Least-Squares Regression Line
\square A line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible.
- Equation of the Least-Squares Regression Line
\square From the data for an explanatory variable \boldsymbol{x} and a response variable \boldsymbol{y} for \boldsymbol{n} individuals, we have calculated the means \bar{x}, \bar{y}, and standard deviations $\boldsymbol{s}_{\boldsymbol{x}}, \boldsymbol{s}_{\boldsymbol{y}}$, as well as their correlation \boldsymbol{r}.

The least-squares regression line is the line:
Predicted $\hat{y}=m x+b$
$\begin{aligned} \text { With slope } \ldots \quad m & =r \frac{s_{y}}{s_{x}} \\ \text { And } y \text {-intercept } \ldots b & =\bar{y}-m \bar{x}\end{aligned}$

This equation was used to calculate the line for predicting BAC for number of beers drunk.

Predicted
$\boldsymbol{y}=-0.0127+0.01796 \boldsymbol{x}$

Chapter 6: Exploring Data: Distributions Interpreting Correlation and Regression

- A Few Cautions When Using Correlation and Regression
\square Both the correlation r and least-squares regression line can be strongly influenced by a few outlying points.
- Always make a scatterplot before doing any calculations.
- Often the relationship between two variables is strongly influenced by other variables.
- Before conclusions are drawn based on correlation and regression, other possible effects of other variables should be considered.

Chapter 6: Exploring Data: Distributions Interpreting Correlation and Regression

- A Few Cautions When Using Correlation and Regression
\square A strong association between two variables is not enough to draw conclusions about cause and effect.
■ Sometimes an observed association really does reflect cause and effect (such as drinking beer causes increased BAC).
- Sometimes a strong association is explained by other variables that influence both \boldsymbol{x} and \boldsymbol{y}.
- Remember, association does not imply causation.

