Chapter 6: Exploring Data: Relationships Lesson Plan

For All Practical Purposes

Mathematical Literacy in Today's World, 9th ed.

- Displaying Relationships: Scatterplots
- Making Predictions: Regression Line
- Correlation
- Least-Squares Regression
- Interpreting Correlation and Regression

Chapter 6: Exploring Data: Distributions Displaying Relationships

Relationship Between Two Variables

- Examine data for two variables to see if there is a relationship between the variables. Does one influence the other?
- Study both variables on the same individual.
- ☐ If a relationship exists between variables, typically one variable influences or causes a change in another variable.
 - Explanatory variable explains, or causes, the change in another variable.
 - Response variable measures the outcome, or response to the change.

Response variable – A variable that measures an outcome or result of a study (observed outcome).

Explanatory variable – A variable that explains or causes change in the response variable.

Displaying Relationships: Scatterplots

Data to Be Used for a Scatterplot

- A scatterplot is a graph that shows the relationship between two numerical variables, measured on the same individual.
 - Explanatory variable, x, is plotted on the horizontal axis (x).
 - Response variable, y, is plotted on the vertical axis (y).
 - Each pair of related variables (x, y) is plotted on the graph.

Example: A study is done to see how the number of beers that a student drinks predicts his/her blood alcohol content (BAC). *Results of 16 students:*

Explanatory variable, x = beers drunk

Response variable, y = BAC level

Student	1	2	3	4	5	6	7	8
Beers	5	2	9	8	3	7	3	5
BAC	0.10	0.03	0.19	0.12	0.04	0.095	0.07	0.06
Student	9	10	11	12	13	14	15	16
Beers	3	5	4	6	5	7	1	4
BAC	0.02	0.05	0.07	0.10	0.85	0.09	0.01	0.05

Displaying Relationships: Scatterplots

Scatterplot

- Example continued: The scatterplot of the blood alcohol content, BAC, (y, response variable) against the number of beers a young adult drinks (x, explanatory variable).
- ☐ The data from the previous table are plotted as points on the graph (x, y).

Examining This Scatterplot...

- 1. What is the overall pattern (form, direction, and strength)?
 - Form Roughly a straight-line pattern.
 - Direction Positive association (both increase).
 - Strength Moderately strong (mostly on line).
- 2. Any striking deviations (outliers)? Not here.

BAC vs. number of beers consumed

Outliers – A deviation in a distribution of a data point falling outside the overall pattern.

Regression Lines

Regression Line

- □ A straight line that describes how a response variable y changes as an explanatory variable x changes.
- Regression lines are often used to predict the value of **y** for a given value of **x**.

A regression line has been added to be able to predict blood alcohol content from the number of beers a student drinks.

Graphically, you can predict that if x = 6 beers, then y = 0.95 BAC.

(Legal limit for driving in many states is BAC = 0.08.)

BAC vs. number of beers consumed

Chapter 6: Exploring Data: Distributions Regression Lines

Using the Equation of the Line for Predictions

☐ It is easier to use the equation of the line for predicting the value of *y*, given the value of *x*.

Using the equation of the line for the previous example: predicted BAC = -0.0127 + (0.01796)(beers) y = -0.127 + 0.01796 (x) For a young adult drinking 6 beers (x = 6): predicted BAC = -0.0127 + 0.01796 (6) = 0.095

Straight Lines

☐ A straight line for predicting **y** from **x** has an equation of the form:

$$\hat{y} = mx + b$$

- ☐ In this equation, *m* is the slope, the amount by which *y* changes when *x* increases by 1 unit.
- \square The number **b** is the **y**-intercept, the value of **y** when x = 0.

Correlation

- Correlation, r
 - Measures the direction and strength of the straight-line relationship between two numerical variables.
 - □ A correlation r is always a number between -1 and 1.
 - It has the same sign as the slope of a regression line.
 - r > 0 for positive association (increase in one variable causes an increase in the other).
 - r < 0 for negative association (increase in one variable causes a decrease in the other)

Correlation

Correlation, r

- □ Perfect correlation r = 1 or r = -1 occurs only when all points lie exactly on a straight line.
- □ The correlation moves away from 1 or −1 (toward zero) as the straight-line relationship gets weaker.
- \Box Correlation r = 0 indicates no straight-line relationship.

Correlation

Correlation

Correlation is strongly affected by a few outlying observations.
 (Also, the mean and standard deviation are affected by outliers.)

Equation of the Correlation

- □ To calculate the correlation, suppose you have data on variable x and y for n individuals.
- ☐ From the data, you have the values calculated for the means and standard deviations for *x* and *y*.
 - The means and standard deviations for the two variables are \bar{x} and s_x for the x-values, and \bar{y} and s_y for the y-values.
- ☐ The correlation r between **x** and **y** is:

$$r = \frac{1}{n-1} \left[\frac{\left(x_1 - \overline{x}\right)\left(y_1 - y\right)}{s_x} + \frac{\left(x_2 - \overline{x}\right)\left(y_2 - y\right)}{s_x} + \dots + \frac{\left(x_n - \overline{x}\right)\left(y_n - y\right)}{s_x} \right]$$

Correlation

Correlation

□ The scatterplots below show examples of how the correlation *r* measures the direction and strength of a straight-line association.

Least-Squares Regression

Least-Squares Regression Line

□ A line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible.

Equation of the Least-Squares Regression Line

□ From the data for an explanatory variable \mathbf{x} and a response variable \mathbf{y} for \mathbf{n} individuals, we have calculated the means $\bar{\mathbf{x}}$, $\bar{\mathbf{y}}$, and standard deviations $\mathbf{s}_{\mathbf{x}}$, $\mathbf{s}_{\mathbf{v}}$, as well as their correlation \mathbf{r} .

The <u>least-squares regression line</u> is the line:

Predicted
$$\hat{y} = mx + b$$

With slope ...
$$m = r \frac{s_y}{s_x}$$

And *y*-intercept ... $b = \overline{y} - m\overline{x}$

This equation was used to calculate the line for predicting BAC for number of beers drunk.

Predicted
$$y = -0.0127 + 0.01796 x$$

Chapter 6: Exploring Data: Distributions Interpreting Correlation and Regression

- A Few Cautions When Using Correlation and Regression
 - □ Both the correlation *r* and least-squares regression line can be strongly influenced by a few outlying points.
 - Always make a scatterplot before doing any calculations.
 - Often the relationship between two variables is strongly influenced by other variables.
 - Before conclusions are drawn based on correlation and regression, other possible effects of other variables should be considered.

Chapter 6: Exploring Data: Distributions Interpreting Correlation and Regression

- A Few Cautions When Using Correlation and Regression
 - ☐ A strong association between two variables is not enough to draw conclusions about cause and effect.
 - Sometimes an observed association really does reflect cause and effect (such as drinking beer causes increased BAC).
 - Sometimes a strong association is explained by other variables that influence both x and y.
 - Remember, association does not imply causation.