Chapter 8: Probability: The Mathematics of Chance
Lesson Plan

- Probability Models and Rules
- Discrete Probability Models
- Equally Likely Outcomes
- Continuous Probability Models
- The Mean and Standard Deviation of a Probability Model
- The Central Limit Theorem
Chapter 8: Probability: The Mathematics of Chance
Probability Models and Rules

Probability Theory
- The mathematical description of randomness.
- Companies rely on profiting from known probabilities.
 - **Examples**: Casinos know every dollar bet will yield revenue; insurance companies base their premiums on known probabilities.

Randomness – A phenomenon is said to be random if individual outcomes are uncertain but the long-term pattern of many individual outcomes is predictable.

Probability – For a random phenomenon, the probability of any outcome is the proportion of times the outcome would occur in a very long series of repetitions.
Chapter 8: Probability: The Mathematics of Chance

Probability Models and Rules

- **Probability Model**
 - A mathematical description of a random phenomenon consisting of two parts: a sample space S and a way of assigning probabilities to events.
 - **Sample Space** – The set of all possible outcomes.
 - **Event** – A subset of a sample space (can be an outcome or set of outcomes).

- **Probability Model Rolling Two Dice**
 - Rolling two dice and summing the spots on the up faces.

Rolling Two Dice: Sample Space and Probabilities

<table>
<thead>
<tr>
<th>Outcome</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>$\frac{3}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{5}{36}$</td>
<td>$\frac{6}{36}$</td>
<td>$\frac{5}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{3}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>$\frac{1}{36}$</td>
</tr>
</tbody>
</table>

The probability of an 8 is $\frac{5}{36} = 0.14$.

[Probability histogram chart with bars for each outcome from 2 to 12, probabilities range from 0.00 to 0.25]
Probability Rules

1. The probability \(P(A) \) of any event \(A \) satisfies \(0 \leq P(A) \leq 1 \).
 - Any probability is a number between 0 and 1.

2. If \(S \) is the sample space in a probability model, the \(P(S) = 1 \).
 - All possible outcomes together must have probability of 1.

3. Two events \(A \) and \(B \) are disjoint if they have no outcomes in common and so can never occur together. If \(A \) and \(B \) are disjoint, \(P(A \text{ or } B) = P(A) + P(B) \) (addition rule for disjoint events).
 - If two events have no outcomes in common, the probability that one or the other occurs is the sum of their individual probabilities.

4. The complement of any event \(A \) is the event that \(A \) does not occur, written as \(A^c \). The complement rule: \(P(A^c) = 1 - P(A) \).
 - The probability that an event does not occur is 1 minus the probability that the event does occur.
Chapter 8: Probability: The Mathematics of Chance

Discrete Probability Models

- **Discrete Probability Model**
 - A probability model with a finite sample space is called discrete.
 - To assign probabilities in a discrete model, list the probability of all the individual outcomes.
 - These probabilities must be between 0 and 1, and the sum is 1.
 - The probability of any event is the sum of the probabilities of the outcomes making up the event.

- **Benford’s Law**
 - The first digit of numbers (not including zero, 0) in legitimate records (tax returns, invoices, etc.) often follow this probability model.
 - Investigators can detect fraud by comparing the first digits in business records (i.e., invoices) with these probabilities.

<table>
<thead>
<tr>
<th>First digit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.301</td>
<td>0.176</td>
<td>0.125</td>
<td>0.097</td>
<td>0.079</td>
<td>0.067</td>
<td>0.058</td>
<td>0.051</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Example:
Event \(A = \{ \text{first digit is 1} \} \)
\[P(A) = P(1) = 0.301 \]
Chapter 8: Probability: The Mathematics of Chance

Equally Likely Outcomes

- **Equally Likely Outcomes**
 - If a random phenomenon has \(k \) possible outcomes, all equally likely, then each individual outcome has probability of \(\frac{1}{k} \).
 - The probability of any event \(A \) is:

\[
P(A) = \frac{\text{count of outcomes in } A}{\text{count of outcomes in } S}
\]

\[
= \frac{\text{count of outcomes in } A}{k}
\]

Example:
Suppose you think the first digits are distributed “at random” among the digits 1 though 9; then the possible outcomes are equally likely.

<table>
<thead>
<tr>
<th>First digit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
</tbody>
</table>

If business records are unlawfully produced by using (1 – 9) random digits, investigators can detect it.
Chapter 8: Probability: The Mathematics of Chance

Equally Likely Outcomes

- Comparing Random Digits (1 – 9) and Benford’s Law
 - Probability histograms of two models for first digits in numerical records (again, not including zero, 0, as a first digit).

 Figure (a) shows equally likely digits (1 – 9).
 Each digit has an equally likely probability to occur $P(1) = \frac{1}{9} = 0.111$.

 Figure (b) shows the digits following Benford’s law.
 In this model, the lower digits have a greater probability of occurring.

 The vertical lines mark the means of the two models.
Chapter 8: Probability: The Mathematics of Chance
Equally Likely Outcomes

- **Combinatorics**
 - The branch of mathematics that counts arrangement of objects when outcomes are equally likely.
 - **Fundamental Principle of Counting** (Multiplication Method of Counting)
 For both rules, we have a collection of n distinct items, and we want to arrange k of these items in order, such that:

Rule A
In the arrangement, the same item can appear several times.
The number of possible arrangements: $n \times n \times \ldots \times n = n^k$

Rule B
In the arrangement, any item can appear no more than once.
The number of possible arrangements: $n \times (n - 1) \times \ldots \times (n - k + 1)$
Chapter 8: Probability: The Mathematics of Chance

Equally Likely Outcomes

Two Examples of Fundamental Principle of Counting

Rule A The number of possible arrangements: \(n \times n \times \ldots \times n = n^k \)

Same item can appear several times.

Example: What is the probability a three-letter code has no X in it?

Count the number of three-letter code with no X: \(25 \times 25 \times 25 = 15,625 \).

Count all possible three-letter codes: \(26 \times 26 \times 26 = 17,576 \).

\[
P(\text{no X}) = \frac{\text{Number of codes with no X}}{\text{Number of all possible codes}} = \frac{25 \times 25 \times 25}{26 \times 26 \times 26} = \frac{15,625}{17,576} = 0.889
\]

Rule B The number of possible arrangements: \(n \times (n - 1) \times \ldots \times (n - k + 1) \)

Any item can appear no more than once.

Example: What is the probability a three-letter code has no X and no repeats?

\[
P(\text{no X, no repeats}) = \frac{\text{Number of codes with no X, no repeats}}{\text{Number of all possible codes, no repeats}} = \frac{25 \times 24 \times 23}{26 \times 25 \times 24} = \frac{13,800}{15,600} = 0.885
\]
Chapter 8: Probability: The Mathematics of Chance

Continuous Probability Model

- **Density Curve**
 - A curve that is always on or above the horizontal axis.
 - The curve always has an area of exactly 1 underneath it.

- **Continuous Probability Model**
 - Assigns probabilities as areas under a density curve.
 - The area under the curve and above any range of values is the probability of an outcome in that range.

Example: Normal Distributions

- Total area under the curve is 1.
- Using the 68-95-99.7 rule, probabilities (or percents) can be determined.
- Probability of 0.95 that proportion \hat{p} from a single SRS is between 0.58 and 0.62 (adults frustrated with shopping).
Mean of a Discrete Probability Model

Suppose that the possible outcomes x_1, x_2, \ldots, x_k in a sample space S are numbers and that p_j is the probability of outcome x_j. The mean μ of this probability model is:

$$\mu = x_1 p_1 + x_2 p_2 + \ldots + x_k p_k$$

Mean of Random Digits Probability Model

$$= 45 (1/9) = 5$$

Mean of Benford’s Probability Model

$$\mu = (1)(0.301) + (2)(0.176) + (3)(0.125) + (4)(0.097) + (5)(0.079) + (6)(0.067) + (7)(0.058) + (8)(0.051) + (9)(0.046)$$

$$= 3.441$$
Mean of a Continuous Probability Model

- Suppose the area under a density curve was cut out of solid material. The mean is the point at which the shape would balance.

Law of Large Numbers

- As a random phenomenon is repeated a large number of times:
 - The proportion of trials on which each outcome occurs gets closer and closer to the probability of that outcome, and
 - The mean \bar{x} of the observed values gets closer and closer to μ.

(This is true for trials with numerical outcomes and a finite mean μ.)

Chapter 8: Probability: The Mathematics of Chance
The Mean and Standard Deviation of a Probability Model
Chapter 8: Probability: The Mathematics of Chance

The Mean and Standard Deviation of a Probability Model

Standard Deviation of a Discrete Probability Model

- Suppose that the possible outcomes \(x_1, x_2, \ldots, x_k \) in a sample space \(S \) are numbers and that \(p_i \) is the probability of outcome \(x_i \).
- The variance \(\sigma^2 \) of this probability model is:
 \[
 \sigma^2 = (x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \ldots + (x_k - \mu)^2 p_k
 \]
- The standard deviation \(\sigma \) is the square root of the variance.

Example: Find the standard deviation for the data that shows the probability model for Benford’s law.

<table>
<thead>
<tr>
<th>First Digit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.301</td>
<td>0.176</td>
<td>0.125</td>
<td>0.097</td>
<td>0.079</td>
<td>0.067</td>
<td>0.058</td>
<td>0.051</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Variance \(\sigma^2 = (x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \ldots + (x_k - \mu)^2 p_k \)

\[
= (1 - 3.441)^2 0.301 + (2 - 3.441)^2 0.176 + (3 - 3.441)^2 0.125 + (4 - 3.441)^2 0.097 + (5 - 3.441)^2 0.079 + (6 - 3.441)^2 0.067 + (7 - 3.441)^2 0.058 + (8 - 3.441)^2 0.051 + (9 - 3.441)^2 0.046 = 6.06
\]

\[
\sigma = \sqrt{\sigma^2} = \sqrt{6.06} = 2.46
\]
One of the most important results of probability theory is the central limit theorem, which says:

- The distribution of any random phenomenon tends to be Normal if we average it over a large number of independent repetitions.
- This theorem allows us to analyze and predict the results of chance phenomena when we average over many observations.

The Central Limit Theorem

- Draw a simple random sample (SRS) of size n from any large population with mean μ and a finite standard deviation σ.

Then,

- The mean of the sampling distribution of \bar{x} is μ.
- The standard deviation of the sampling distribution of \bar{x} is σ/\sqrt{n}.
- The central limit theorem says that the sampling distribution of \bar{x} is approximately normal when the sample size n is large.